Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38521159

RESUMEN

BACKGROUND: Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS: We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS: We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS: Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.

2.
Neuroimage ; 220: 116842, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339774

RESUMEN

Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajectories of brain biomarkers at various levels and among different age groups. The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes with age in adulthood is not resolved. Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were scanned up to three consecutive times with 3.32±0.32 years between consecutive scans (N = 482, 359, 302). Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods; direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in the ICV in adulthood until the fourth decade of life (average change +0.03%/y, or about 0.5 ml/y, at age 20), and decrease in the ICV afterward (-0.09%/y, or about -1.2 ml/y, at age 55). To account for previous cross-sectional reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We attribute the cross-sectional results to a generational effect. In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related changes in the longitudinalmeasure are smaller than those reported using cross-sectional approaches and unlikely to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología , Adulto Joven
3.
Neuropsychopharmacology ; 44(3): 581-589, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30301944

RESUMEN

Research findings implicate cerebral glutamate in the pathophysiology of schizophrenia, including genetic studies reporting associations with glutamatergic neurotransmission. The extent to which aberrant glutamate levels can be explained by genetic factors is unknown, and if glutamate can serve as a marker of genetic susceptibility for schizophrenia remains to be established. We investigated the heritability of cerebral glutamate levels and whether a potential association with schizophrenia spectrum disorders could be explained by genetic factors. Twenty-three monozygotic (MZ) and 20 dizygotic (DZ) proband pairs con- or discordant for schizophrenia spectrum disorders, along with healthy control pairs (MZ = 28, DZ = 18) were recruited via the National Danish Twin Register and the Psychiatric Central Register (17 additional twins were scanned without their siblings). Glutamate levels in the left thalamus and the anterior cingulate cortex (ACC) were measured using 1[H]-magnetic resonance spectroscopy at 3 Tesla and analyzed by structural equation modeling. Glutamate levels in the left thalamus were heritable and positively correlated with liability for schizophrenia spectrum disorders (phenotypic correlation, 0.16, [0.02-0.29]; p = 0.010). The correlation was explained by common genes influencing both the levels of glutamate and liability for schizophrenia spectrum disorders. In the ACC, glutamate and glx levels were heritable, but not correlated to disease liability. Increases in thalamic glutamate levels found in schizophrenia spectrum disorders are explained by genetic influences related to the disease, and as such the measure could be a potential marker of genetic susceptibility, useful in early detection and stratification of patients with psychosis.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Ácido Glutámico/metabolismo , Giro del Cíngulo/metabolismo , Sistema de Registros , Esquizofrenia/genética , Esquizofrenia/metabolismo , Tálamo/metabolismo , Adulto , Dinamarca , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Espectroscopía de Protones por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...